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Abstract. In this article we argue that open agent organisations can
be effectively designed and implemented as institutionalized electronic
organisations (electronic institutions) composed of a vast amount of het-
erogeneous (human and software) agents playing different roles and in-
teracting by means of speech acts. Here we take the view that the design
and development of electronic institutions must be guided by a prin-
cipled methodology. Along this direction, we advocate for the presence
of an underlying formal method that underpins the use of structured
design techniques and formal analysis, facilitating development, compo-
sition and reuse. For this purpose we propose a specification formalism
for electronic institutions that founds their design, analysis and develop-
ment.

1 Introduction

According to [20], human interactions are guided by institutions, which provide
a structure to everyday life. Institutions represent the rules of the game in a
society, including any (formal or informal) form of constraint that human beings
devise to shape human interaction. Therefore, they are the framework within
which human interaction takes place, defining what individuals are forbidden
and permitted and under what conditions. Institutions must be created (f.i. the
Constitution), and may evolve over time (f.i. the common law). A distinguishing
feature of institutions is the clear distinction drawn between the rules and the
players. Establishing a stable structure to human interaction appears as the
raison d’étre of institutions.

At this point it is convenient to refer to the crucial distinction between insti-
tutions and organisations. Following the rational view of organisations provided
by [10] “organisations are social units (or human groupings) deliberately con-
structed and reconstructed to seek specific goals”. Organisations include politi-
cal, economic, social and educational bodies (f.i. political parties, trade unions,
clubs, universities). In [24] goal specificity and formalization are identified as the
two main characteristics of organisations, meaning by formalization the attempt



to standardize and regulate the behavior of the roles interacting within an or-
ganization. Therefore roles are understood as standardized patterns of behavior
required of all agents playing a part in a given functional relationship in the
context of an organization.

The way organisations are created and how they evolve are fundamentally
influenced by the institutional framework, and, in turn they influence how the
institutional framework evolves. Organisations must conform to the rules of in-
stitutions in order to receive legitimacy and support.

In this paper we adopt as a main goal the design and development of effi-
cient and robust open agent organisations. At the outset we wonder whether we
can follow a mimetic strategy that permits us to borrow and adapt well-know
social mechanisms and concepts that have proven valuable when employed for
articulating human societies. For this purpose, we firstly make explicit the ma-
jor issues arising in our principal task taking inspiration on the analysis already
presented in [8].

— Heterogeneity. The society must be capable of coping with and support-
ing heterogeneous agents, i.e. agents developed in different languages, with
different purposes (objectives) and preferences, and endowed with varying
degrees of sophistication.

— Trust and Accountability. Agents are not always expected to reliably follow
the rules of the society due to multiple reasons (bugs, bounded rational-
ity, etc.), and therefore the society must be equipped with the appropriate
mechanisms for monitoring and conveniently managing malicious, fraudulent
agent behavior.

— Exception Handling. We must contemplate the capability of detecting, pre-
venting, and recovering from failures resulting from unintended disfunctional
behaviors that may jeopardize the overall functioning of the society.

— Societal change. Agent societies are not static; they may evolve over time by
altering, eliminating or incorporating rules. Hence the need of demanding
flexible agent societies capable of accommodating future changes.

We observe that indeed human societies successfully deal with the issues
above by deploying institutions that:

— determine what individuals are prohibited from doing and what are permit-
ted to undertake;

— costlinessly ascertain violations and the severity of the punishment to be
enacted; and

— evolve and are altered by human beings.

We uphold that agent organisations can be effectively designed and imple-
mented as institutionalized agent organisations —that henceforth we shall term
electronic institutions, or e-institutions for shorter. From this follows that one of
our main purposes will be to model the creation, evolution, and consequences of
the rules defining institutions and their incorporation into agent organisations.



Notice that the kind of electronic institutions that we will be considering
are populated by a vast amount of heterogeneous (human and software) agents
playing different roles and interacting by means of speech acts [25]. In other
words, we make the assumption that any interacting activity taking place within
our electronic institutions is purely dialogic.

Throughout this paper, we focus on the macro-level (societal) aspects refer-
ring to the infrastructure of electronic institutions, instead of the micro-level
(internal) aspects of agents. Such a task is widely admitted by the multi-agent
community as highly delicate [18]. This fact makes us advocate for adopting
a principled, engineering approach founded on a formal specification of elec-
tronic institutions, continuing the work presented in [22,26], that founds their
design, analysis and development of architecturally-neutral electronic institu-
tions. As the most salient result, we obtain a graphical specification language
that is intended to be embedded into a development environment that assists
e-institutions’ designers at all the stages of the development cycle.

The rest of the paper is organized as follows. In Section 2 we argue on the need
of a formal method that underpins the specification, analysis and development
of electronic institutions. Next, in Section 3 we provide a mathematically sound,
unambiguous, abstract definition of electronic institutions. In order to illustrate
how to specify in practice electronic institutions, we offer in Section 4 an example
corresponding to the fish market an electronic auction house. In Section 5 we
summarize and highlight the major benefits arising from our contribution, and
discuss the open issues that can be faced taking our proposal as the starting
point.

2 A Formal Specification Approach

Formal methods in software building comprise two main activities, namely formal
specification and verified design, that is the precise specification of the behaviour
of a piece of software, so that such software can be subsequently produced, and
the proof of whether the implementation complies with the specification. Thus,
the role of any formal method is to provide a clear and precise description of what
a system is supposed to do, rather than a formulation of how it operates [9]. The
presence of an underlying formal model will support the use of structured design
techniques and formal analysis, facilitating development, composition and reuse.

In this section we take such formal approach with the purpose of specifying
software infrastructures for electronic institutions. Our formal specification will
be based on a purposely devised specification language enabled to produce both
visual and textual specifications of infrastructures for electronic institutions.
In other words, such specification language shall serve to produce sound an
unambiguous specifications of the rules of the game of an electronic institution.
It is apparent that at a further stage the specification language can be extended
in order to allow for the specification of the players of the game. Such extension
is expected to support the specification of micro (internal) aspects of agents,



i.e. their architectures and logics. As a result, it would be possible the complete
specification (infrastructure and agents) of an electronic institution.

In this work we solely focus on the specification of infrastructures. As a first
step, we identify the core notions on which our current conception of electronic
institution, and so our specification language, is to be founded:

— Agents and Roles. Agents are the players in an electronic institution, inter-
acting by the exchange of speech acts, whereas roles are defined as stan-
dardized patterns of behaviour. The identification and regulation of roles is
considered as part of the formalization process of any organisation [24]. Any
agent within an electronic institution is required to adopt some role(s). A
major advantage of using roles is that they can be updated without hav-
ing to update the actions for every agent on an individual basis. Recently,
the concept of role is becoming increasingly studied by software engineer-
ing researchers [21,16], and even more recently by researchers in the agents’
community [4,17,28,6,5].

— Dialogic framework. Some aspects of an institution such as the objects of the
world and the language employed for communicating are fixed, constituting
the context or framework of interaction amongst agents. In a dialogic institu-
tion, agents interact trough speech acts. Institutions establish the acceptable
speech acts by defining the ontology (vocabulary) —the common language to
represent the ”world”— and the common language for communication and
knowledge representation which are bundled in what we call dialogic frame-
work. By sharing a dialogic framework, we enable heterogeneous agents to
exchange knowledge with other agents.

— Scene. Interactions between agents are articulated through agent group meet-
ings, which we call scenes, with a well-defined communication protocol. We
consider the protocol of a scene to be the possible dialogues agents may have.

— Performative structure. Scenes can be connected, composing a network of
scenes, the so-called performative structure, which captures the existing re-
lationships among scenes. The specification of a peformative structure con-
tains a description of how the different roles can legally move from scene to
scene. Agents within a performative structure may be possibly participating
in different scenes, with different roles, and at the same time.

— Normative Rules. Agent actions in the context of an institution may have
consequences that either limit or enlarge its subsequent acting possibilities.
Such consequences will impose obligations to the agents and affect its pos-
sible paths within the performative structure.

Next, in Section 3 we offer a detailed analysis of the notions introduced
above that helps us gradually construct a formal specification of an electronic
institution infrastructure.

3 Electronic Institutions’ Structure

First of all, and for notational purposes, we introduce some definitions that will
apply henceforth. Let Agents = {a1,...,a,} be a finite set of agent identifiers,



and Roles = {ry,...,rm} a finite set of role identifiers respectively. At the
specification level we regard agents and roles simply as symbols and type names.
Then by a; : 7; we mean that agent a; is of type r;. Moreover, we define the sets
Va={z1,...,24} and Vg = {p1,... , pr} as a finite set of agent variables and
a finite set of role variables respectively.

3.1 Roles

We have already identified the notion of role as central in the specification of elec-
tronic institutions. Roles allow us to abstract from the individuals, the agents,
that get involved in an institution’s activities. In order to take part in an elec-
tronic institution, an agent is obliged to adopt some role(s). Thereafter an agent
playing a given role must conform to the pattern of behaviour attached to that
particular role. Therefore, all agents adopting a very same role are guaranteed
to have the same rights, duties and opportunities. Notice that we can think of
roles as agent types. More precisely, we define a role as a finite set of dialogic
actions. Such actions are intended to represent the capabilities of the role. For
instance, an agent playing the buyer role is capable of submitting bids and an
agent playing the auctioneer role can offer goods at auction.

There are several issues concerning role/role relationships. As an agent may
possibly play several roles at the same time, role/role associations standing for
conflict of interests must be defined with the purpose of protecting the institution
against an agent’s malicious behaviour.

Thus, in general, the management of agent/role and role/role relationships
becomes a fundamental issue for electronic institutions. Role-based Access Con-
trol Models (RBAC) [23] developed in the computer security arena offer well-
founded mechanisms for handling both types of relationships. Fundamentally,
RBAC has been successfully employed for managing the security administration
of organisations [3,2]. But more interestingly, RBAC has been accurately formal-
ized [12,14,13]. In order to solve the agent/role and role/role relationships, we
borrow and adapt the formalisation of the rules for RBAC offered by the NIST
RBAC model [14,13,12], which extends the basic RBAC model by adding role
hierarchies, cardinality, and conflict of interests relationships.

Although RBAC manages three types of associations, namely associations
between users (agents) and roles, associations between roles, and associations
between roles and permissions[12], in this section we solely concentrate on the
role/role associations.

When analysing human institutions we observe that the roles played by hu-
mans are hierarchically organised. There are many ways of constructing of a
role hierarchy to express different types of relationships among roles. Here we
consider that roles are organised as a partially ordered set (poset), represented
as a pair R = (Roles, =), reflecting a role hierarchy. Then if r > 7' holds we say
that r subsumes r’ or an agent playing role r is also enabled to play role r’.

We also realise that there are conflicting roles within an institution. For
instance, in the fish market the boss and buyer roles are mutually exclusive in
the sense that no one can ever act as the boss of the market and as a buyer. In



a bank, the teller and auditor roles are also considered as mutually exclusive.
We define a policy of static separation of duty (ssd) to mean that roles specified
as mutually exclusive cannot be both authorised to an agent.

We represent the static separation of duties as the relation ssd C Roles X
Roles. A pair (r,r') € ssd denotes that r,r' cannot be authorised to the very
same agent. Observe that the static separation of duties will be considered when
assigning roles to an agent entering the institution and it restricts the possible
assignations of roles to an agent.

Summarising, the adoption of a policy of separation of duties will allow us to
express constraints on the role/role associations indicating conflicts of interests.
It seems obvious that ssd must satisfy some constraints respect to the relation
>.

Finally, we explicitly state the requirements identified so far as necessary for
managing the role/role relationships:

(i) The static separation of duties relation is symmetric. Formally, for all r;,r; €
Roles (ri,rj) € ssd = (rj,r;) € ssd.

(ii) If a role subsumes another role, and that role is in static separation of duties
with a third role, then the first role is in static separation of duties with the
third one. Formally, for all r,r;,r; € Roles,r = r;, (ri,r;) € ssd = (r,r;) €
ssd.

(iii) If a role subsumes another role, then the two roles cannot be in static sepa-
ration of duties. Formally, r; = r; = (r;,r;) € ssd.

Observe that from the last requirements the following properties can be in-
ferred:

(i) For all r € Roles = (r,r) & ssd since the > relation is reflexive.
(ii) If (rj,r;) € ssd then for all 7 > r; and for all s = r; = (r,s) € ssd.
(iii) If exists r such that » > r; and r = r; = (r;,7;) ¢ ssd.

3.2 Dialogic Framework

In the most general case, each agent immersed in a multi-agent environment
is endowed with its own inner language and ontology. In order to allow agents
to successfully interact with other agents we must address the fundamental is-
sue of putting their languages and ontologies in relation. For this purpose, we
propose that agents share when communicating what we call the dialogic frame-
work [19], composed of a communication language, a representation language
for domain content and an ontology. By sharing a dialogic framework, we enable
heterogeneous agents to exchange knowledge with other agents.

Definition 1. We define a dialogic framework as a tuple DF = (O,L,I,CL,
Time) where

— O stands for an ontology (vocabulary);
— L stands for a representation language for domain content;



— I is the set of illocutionary particles;
— CL is the (agent) communication language;
— Time is a discrete and partially ordered set of instants.

Within a dialogic framework the representation language (KIF [15], first-
order logic, etc.) allows for the encoding of the knowledge to be exchanged among
agents using the vocabulary offered by the O ontology. The propositions built
with the aid of L, the “inner” language, are embedded into an “outer language”,
C L, which expresses the intentions of the utterance by means of the illocutionary
particles in I. We take this approach in accord to speech act theory [25], which
postulates that utterances are not simply propositions that are true or false, but
attempts on the part of the speaker that succeed or fail.

We consider that CL expressions are constructed as formula of the type
v(a; @ pi,aj : pj,p,7) where ¢ € I,a; and a; are terms which can be either
agent variables or agent identifiers, p; and p; are terms which can be either
role variables or role identifiers, ¢ € L and 7 is a term which can be either a
time variable or a value in Time. We say that a C'L expression is an illocution
when a;, a; are agent identifiers, p; and p; are role identifiers and 7 is a value in
T'ime time-stamping the illocution. We say that a C'L expression is an illocution
scheme when some of the terms corresponds to a variable. This distinction will
be valuable when specifying scenes in the following section.

During the execution of a scene, variables in C'L expressions will be bound
to concrete values. For the purpose of allowing to change the value of a bound
variable, we will denote it differently. By ¢ we denote that once bound ¢ it can
be assigned new values. In this way, we provide a way of representing that the
value of a variable can be overwritten.

Henceforth we shall employ question marks to differentiate variables in CL
expressions, including the expression corresponding to the contents, from other
terms.

Next we present examples of C'L expressions:

— request(?z; : pra,?x; : pra, appointment(?t),?t') is an illocution scheme.

— request(KQLAT : pra,marc : pra, appointment(tomorrow),5) is an illocu-
tion that instantiates the schema above. We interpret this C' L expression as
a request sent by agent KQLAT playing the pra (personal representative
assistant) role to agent marc playing the same pra role for arranging an
appointment to meet tomorrow.

Finally, we would like to stress the importance of the dialogic framework as
the component containing the ontologic elements on the basis of which any agent
interaction can be specified as illustrated next when introducing the notion of
scene. Thus, a dialogic framework must be regarded as a necessary ingredient to
specify scenes.

3.3 Scene

Before formally defining a scene, we must precisely understand what a scene
is. Recall that the whole activity within an electronic institution was described



above as a composition of multiple, well-separated, and possibly concurrent,
dialogic activities, each one involving different groups of agents playing different
roles. For each activity, interactions between agents are articulated through agent
group meetings, which we call scenes, that follow well-defined communication
protocols. In fact, no agent interaction within an institution takes place out of
the context of a scene. We consider the protocol of each scene to model the
possible dialogic interactions between roles instead of agents. In other words,
scene protocols are patterns of multi-role conversation.

A scene protocol is specified by a graph where the nodes of the graph repre-
sent the different states of the conversation and the arcs connecting the nodes
are labelled with illocution schemes that make scene state change. The graph
has a single initial state (non-reachable once left) and a set of final states rep-
resenting the different endings of the conversation. There is no arc connecting a
final state to some other state.

Normally the correct evolution of a conversation protocol requires a certain
number of agents for each role involved in it. Then a minimum and maximum
number of agents for role is defined and the number of agents playing each role
has to be always between them.

Because we aim at modelling multi-agent conversations whose set of partici-
pants may dynamically vary, scenes will allow that agents either join in or leave
at some particular moments during an ongoing conversation. For this purpose,
we differentiate for each role the sets of access and exit states. The incorpora-
tion or exit of agents has to satisfy the restriction mentioned above about the
number of agents for role. Obviously, the final states have to be an exit state
for each role, in order to allow all the agents to leave when the scene is finished.
On the other hand, the initial state has to be an access state for the roles whose
minimum is greater than zero, in order to start the scene.

Definition 2. Formally, a scene is a tuple ':
S =(R,DF,W,wy, Wy, (WA)rer, WE;)rer, @, A\, min, Max)

where

R is the set of roles of the scene;

— DF is a dialogic framework;

— W is a finite, non-empty set of scene states;

— wo € W is the initial state;

— Wy C W is the non-empty set of final states;

(WA;)rer C W is a family of non-empty sets such that W A, stands for the
set of access states for the role r € R;

(WE,)rcr € W is a family of non-empty sets such that W E,. stands for the
set of exit states for the role r € R;

— O CW x W is a set of directed edges;

! When we need to differentiate the elements of two scenes s and s’ we will use a
superindex s or s’.



— A: 0 — CL is alabelling function;
— min, Max : R — IN min(r) and Maz(r) return respectively the minimum
and maximum number of agents that must and can play the role r € R;

Notice that not every illocution scheme is valid to label an arc. In general, a
CL expression (o : pi,a; : pj,p,T) can label an arc if it satisfies:

— oy and «; are agent variables;
— pi and p; are either role variables or role identifiers in R,; and
— 7 is a time variable;

These variables will be bound to concrete values during the execution of
the scene. For example, agent variables in an illocution scheme will be bound
respectively to the identifier of the agent that has uttered the illocution and to
the identifier of the agent who has received the illocution. Then at each moment
the bindings of the variables will be the context of the scene execution.

Next, we describe an example of a scene extracted from the case of study
presented in Section 4, that we subsequently employ to illustrate how designers
can construct graphical specifications of scenes.

Case Study We have selected as example, the scene representing the main
activity within the marketplace: the auctioning of goods in the auction room.
This scene is governed by the auctioneer making use of the downward bidding
protocol (DBP) that next we state explicitly:

[Step 1 ] The auctioneer chooses a good out of a lot of goods that is sorted
according to the order in which sellers deliver their goods to the sellers’
admitter.

[Step 2 ] With a chosen good, the auctioneer opens a bidding round by quot-
ing offers downward from the good’s starting price, previously fixed by the
sellers’ admitter, as long as these price quotations are above a reserve price
set by the seller.

[Step 3 ] For each price called by the auctioneer, several situations might arise
during the open round:

Multiple bids. Several buyers submit their bids at the current price. In
this case, a collision comes about, the good is not sold to any buyer,
and the auctioneer restarts the round at a higher price. Nevertheless,
the auctioneer tracks whether a given number of successive collisions is
reached, in order to avoid an infinite collision loop. This loop is broken
by randomly selecting one buyer out of the set of colliding bidders.

One bid. Only one buyer submits a bid at the current price. The good is
sold to this buyer if his credit can support his bid. Whenever there is
an unsupported bid the round is restarted by the auctioneer at a higher
price, the unsuccessful bidder is punished with a fine, and he is expelled
out from the auction room unless such fine is paid off.



No bids. No buyer submits a bid at the current price. If the reserve price
has not been reached yet, the auctioneer quotes a new price which is
obtained by decreasing the current price according to a price step. If the
reserve price is reached, the auctioneer declares the good withdrawn and
closes the round.

[Step 4 ] The first three steps repeat until there are no more goods left.

Graphical Representation The purpose of the formal definition above is to
give a a mathematically sound definition of scene. However in practice scenes
will be graphically specified. For instance, Figure 1 depicts the graphical speci-
fications of the scene presented above.

As to the auction scene (see Figure 1), we observe that the specification of the
role set requires the participation of exactly one auctioneer(A4) and, at least, two
buyers(b)(min), although up to ten buyers might be allowed to participate(Max).
The graph depicts the states of the scene, along with the edges representing the
legal transitions between scene states, and labelled with illocution schemes of the
communication language of the dialogic framework. The information contents of
such schemes is expressed in first-order logic (FOL) making use of the concepts
in the e-auctions ontology. The type of performative is specified in the set I —
which contains the types of performatives identified in [7]— listed in the Particles
area.

Notice that some states are identified as access and exit states. Apart from
the initial and final states, the w; state is labelled as an access and exit state for
buyers —meaning that after either a collision, sanction or expulsion, new buyers
might be admitted into the scene— while w3 is uniquely an access state.

3.4 Performative Structure

The notion of performative structure is the most complex and interesting of this
formalism, since it models the relationships among scenes. Notice that although
conversations (scenes) are currently admitted as the unit of communication be-
tween agents, limited work has been done concerning the modelling of the rela-
tionships among different scenes. This issue arises when these conversations are
embedded in a broader context, such as, for instance, organisations and institu-
tions. If this is the case, it does make sense to capture the relationships among
scenes. Thus, while a scene models a particular multi-agent dialogic activity,
more complex activities can be specified by establishing relationships among
scenes that allow:

— to capture causal dependencies among scenes (f.i. a patient cannot undergo
an operation without being previously diagnosed by a doctor);

— to define synchronisation mechanisms involving scenes (f.i. within an ex-
change house, we might synchronise traders before allowing them to start
off a negotiation scene);
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Fig. 1. Graphical Specification of an Auction Scene

— to establish parallelism mechanisms involving scenes (f.i. in an auction house,
several auctions might be run at the same time);

— to define choice points that allow roles leaving a scene to choose their des-
tination (f.i. an agent attending a conference is expected to opt for one of
various, simultaneous talks);

— to establish the role flow policy among scenes, i.e. which paths can be fol-
lowed by the roles leaving a scene and which target scenes they can reach.
In a conference centre, a speaker, after finishing off his talk, is permitted



to leave the conference room and make it for another conference room to
attend an ongoing talk. Notice that, for this particular case, the migration
of this speaker also involves the adoption of another role.

In general, the activity represented by a performative structure can be de-
picted as a collection of multiple, concurrent scenes. Agents navigate from scene
to scene constrained by the rules defining the relationships among scenes. More-
over, the very same agent can be possibly participating in multiple scenes at
the same time. Hence, it is our purpose to propose a formal specification of
performative structures expressive enough to facilitate the specification of such
rules.

From a structural point of view, performative structures’ specifications must
be regarded as networks of scenes. At execution time, a performative structure
becomes populated by agents that make it evolve whenever these comply with
the rules encoded by the specification. Concretely, an agent participating in the
execution of a performative structure devotes his time to jointly start new scene
executions, to enter active scenes where the agent interacts with other agents,
to leave active scenes to possibly enter other scenes, and finally to abandon the
performative structure.

At this point we must notice that the way agents move from scene to scene
depends on the type of relationship holding among the source and target scenes.
As mentioned above, sometimes we might be interested in forcing agents to
synchronise before jumping into either new or existing scene executions, or offer
choice points so that an agent can decide which target scene to incorporate into,
and so on. Summarising, in order to capture the type of relationships listed above
we consider that any performative structure contains a special elements that we
call transition, devoted to mediate different types of connections among scenes.
Each scene may be connected to multiple transitions, and in turn each transition
may be connected to multiple scenes. In both cases, the connection between a
scene and a transition is made by means of a directed arc. Then we can refer
to the source and target of each arc. And given either a scene or a transition,
we shall distinguish between its incoming and outgoing arcs. Notice that there
is no direct connection between two scenes, or, in other words, all connections
between scenes are mediated by transitions. We do not allow also the connection
of transitions.

Agents will be moving from a scene instance (execution) to another by
traversing the transition connecting the scenes and following the arcs that con-
nect transitions and scenes. Transitions must be regarded as a kind of routers
that contain local information about the scene instances that they connect.
Therefore, instead of modelling some activity, they are intended to route agents
towards their destinations in different ways, depending on the type of transition.

The arcs connecting transitions to scenes play also a fundamental role. Notice
that as there might be multiple (or perhaps none) scene executions of a target
scene, it should be specified whether the agents following the arcs are allowed
to start a new scene execution, whether they can choose a single or a subset of
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Fig. 2. Graphical Elements of a Performative Structure

scenes to incorporate into, or whether they must enter all the available scene
executions.

We define a set of different types of transitions and arcs whose semantics will
highly constrain the mobility of agents among the scene instances (the ongoing
activities) of a performative structure. The differences between the diverse types
of transitions that we consider are based on how they allow to progress the agents
that they receive towards other scenes. Let us divide each transition into two
parts: the input, through which it receives agents from the incoming arcs, and
the output, through which agents leave following the outgoing arcs towards other
scenes. Then, the following classification of transitions is based on the behaviour
that they exhibit on their input and output sides:

— And/And: They establish synchronisation and parallelism points since agents
are forced to synchronise at their input to subsequently follow the outgoing
arcs in parallel.

— Or/Or: They behave in an asynchronous way at the input (agents are not
required to wait for others in order to progress through), and as choice points
at the output (agents are permitted to select which outgoing arc, which path,
to follow when leaving).

— And/Or: They are a hybrid of the two types of transitions above: on the one
hand, likewise and/and transitions, they force agents to synchronise on the
input side, while on the other hand, likewise or/or transitions, they permit
agents to individually make the choice of which path to follow when leaving.

— Or/And: They are also a hybrid of and/and and or/or transitions. Agents
are not required to wait for others on the input side, but they are forced to
follow all the possible outgoing arcs.

According to this classification, we define T = {and/and, or/or, and/or, or/and}
as a set of transition types.

Depending on the path followed by the agents when traversing a transition,
they may either start scenes or incorporate to one or more ongoing scenes. Thus
there are also different types of paths, arcs, for reaching scenes after traversing



transitions. We define & = {1, some,all,*} as the set of arc types. Following
a I-arc constrains agents to enter a single scene instance of the target scene,
whereas a some-arc is less restrictive and allows the agents to choose a subset
of scene instances to enter, and an all arc forces the agents to enter all the scene
instances to which the paths lead. Finally, a *- arc fires the creation of a new
scene instance of the target scene. Furthermore, each arc will be labelled with
the collection of roles that are allowed to follow the arc.

Within the transitions agents are informed about current active scenes and
request for their destination. Thus they constitute an intermediate state for
agents that move from scene to scene. Transitions are employed by the insti-
tution for brokering purposes between agents and the active scenes connected
to the transition. Thus within transitions agents will be informed about the ac-
tive scenes that they can reach so that they choose their destination, i.e. either
some active scene to join or some scene to be started. Each transition has an
institutional agent that interact with arriving agents. The dialogue in transition
can be specified as the dialogue in the scenes with the vision of the institutional
agent and one arriving agent i.e. as a conversation with the institutional agent
and another agent. When an agent arrives it is informed about its possibilities
that depend on the type of the transition and the type of the arcs connecting
the transition to the target scene(s). The difference between a transition and the
rest of the scenes is that there is not a global state of the transition and any
agent can be in a different state? . For example, new agents after arrive are in
the initial state while other agents are in a middle state after been informed of
their destination or waiting to synchronize with other agents or some agents can
be in a final state waiting to move to their destinations. Agents requesting to
move to a transition are always accepted and they are incorporated to the initial
state. After they have selected their target scenes they wait in a final state until
the target scene(s) arrives to an access state when.

Figure 2 depicts the graphical representations that we will employ to repre-
sent the performative structure’s components introduced so far. From the point
of view of the modeller, such graphical components are the pieces that serve to
construct graphical specifications of performative structures.

Before stating a concrete definition of performative structure, there is a last
element to be considered. Notice that although two scenes may be connected
by a transition, the eventual migration of agents from a source scene instance
to a target scene instance not only depends on the role of the agents but also
on the results achieved by agents in the source scene. Thus, for instance, in the
fish market, although a registration scene is connected to an auction scene, the
access of a buying agent to the execution of the auction scene is forbidden if
it has not successfully completed the registration process when going through
a registration scene. In a conference centre environment, two agents are not
allowed to meet to talk at a meeting room unless they have previously arranged
and committed to some appointment. This fact motivates the introduction of

% Transitions can be seen as scenes where the state of the scene is the Cartesian product
of the state of each agent



constraints over the arcs connecting scenes and transitions. We will require that
agents satisfy the constraints, conditions, over the arc solicited to be followed
when attempting to reach a destination scene. Therefore, conditions must also
appear in our formal definition of performative structure.

Finally, we bundle all the elements introduced above to provide a formal
definition of a performative structure specification:

Definition 3. Formally, given a meta-language M L, a performative structure
is a tuple

PS = <SaT7507S-QaE7fL7fT7f57fE7cap/>

where

— S is a finite, non-empty set of scenes;

— T is a finite and non-empty set of transitions;

— 89 € S is the root scene;

— s € S is the output scene;

— E = E'|JE© is a set of arc identifiers where E! C (WEs) x T is a set of
edges from exit states of scenes to transitions where W Es = J,c s U,cr WE;,
and EC C T x S is a set of edges from transitions to scenes;

— fr : E — 2Va*E i5 the labelling function;

— fr: T — T maps each transition to its type;

— fe : E — &£ maps each arc to its type;

— C : E — ML maps each arc to a meta-language expression of type boolean,
i.e. a predicate, representing the arc’s constraints;

— p: S — IN sets the upper bound on the number of allowed simultaneous
scenes for the scene scheme represented by each scene node.

In order to present the requirements to be satisfied by the elements above, some
previous definitions are needed. Let s € S be a scene such that s = (R, DF, W,
wo, Wy, (WA ) rer, WEy)rer, 0, L,min, Maz). Let var and roles be two func-
tions over arcs, defined respectively as var : E — 24 and roles : E — 2fFoles,
which return for each arc the set of variables and the set of roles contained
in the arc label. Then the following requirements must be satisfied by every
performative structure:

(i) All the agent variables labelling the incoming arcs of a given transition
must also appear on the outgoing arcs of the transition: for any ¢t € T
Us.err var((s,1) = U gyepo var((t, "))

(ii) For every scene there is a path from the root transition to the output scene

passing through the scene. For all s € S there is a path sg,t1,--- ,,Sm, tm, S0
such that (s;,t;) € ET,(t;,8i41) € E¢ Vi =0,...,m —1 and s; = s for
some 4.

(iii) For every scene, the roles labelling its outgoing arcs must belong to its role
set and for every role in its role set there is at least one outgoing arc labelled
with it, i.e. for all s € S U, 4yep: roles((s, b)) = R°.



(iv) For every scene, the roles labelling its incoming arcs must belong to its role
set and for every role of its role set there is at least one incoming arc labelled
with it, i.e. for every scene s € S U 5)epo roles((t, s)) = R®.

(v) For every scene, there must be at least one access state for every role la-
belling an incoming arc, i.e. for every arc (¢,5) € E?, and for every role
r € roles((t,s)) there is an access state w € WA? where WA? is the set of
access states for the role r in the scene s.

(vi) For every and/and transition, every outgoing arc has to be connected to a
scene containing at least one access state for all the roles labelling the arc.
More formally, for every (¢, s) such that fr(t) = and/and then (. ¢, ores((,5)) WAr #
0.

(vii) For every arc of type * the initial state of the scene must belong to the set of
access states for each role labelling the arc. Formally, for each arc (¢, s) € E©
such that fr((t,s)) = * we require that wo € [, ¢ oes((1,s)) W Ar-

(viii) Agents will not be allowed to progress through an arc of type * if the number
of instances of this scene has reached its maximum.

From the definition above, we can simply view a performative structure as
a network of scenes interconnected by different types of transitions. The specifi-
cation of a performative structure amounts to select a collection of scenes, and
next create sound connections among them. Complementarity, the limits on the
number of scenes, u, need to be defined. Figure 3 shows how the graphical ele-
ments in Figure 2 are combined in order to produce the graphical specification
of the performative structure corresponding to the fish market. Observe that
the scene that Figure 1 represents, appears in the resulting specification as a
particular node.

Notice that we demand any performative structure to contain a root and an
output scene. The output scene does not model any activity, and so it must be
regarded as the exit point of the performative structure. As to the root scene, it
must be regarded as the starting point of any agent accessing the performative
structure. Departing from the root scene, agents will make for other scenes within
the performative structure.

3.5 Normative Rules

Such as depicted, a peformative structure constrains the behaviour of any par-
ticipating agents at two levels:

(i) intra-scene: Scene protocols dictate for each agent role within a scene what
can be said, by whom, to whom, and when.

(ii) inter-scene: The connections among the scenes of a performative structure
define the possible paths that agents may follow depending on their roles.
Furthermore, the constraints over output arcs impose additional limitations
to the agents when attempting to reach a target scene.



And yet, we understand that an agent’s actions within a scene may have
consequences that either limit or enlarge its subsequent acting possibilities out
of the scope of the scene.

Such consequences have effect along two different directions. On the one
hand some actions will introduce subsequent acting commitments that have to
be interpreted as acting obligations. On the other hand, other consequences
occurring locally within a scene may vary the paths that an agent can follow in
the performative structure because they affect the satisfaction and dissatisfaction
of the constraints labelling paths. Both types of consequences will be required
to be kept by an institution for each agent on an individual basis. In general,
for a given agent we shall refer to such consequences as the agent context within
the institution.

For instance, a trading agent winning a bidding round within an auction
house is obliged to subsequently pay for the acquired good. Considering the
performative structure in Figure 3 that implies that the trading agent has to
move at some time to the buyers’ settlements scene to pay for the acquired
good. Notice that although the auction scene is connected to the output scene,
the path is disallowed to agents unless they fulfil their pending payments.

In order to represent the deontic notion of obligation, we set out the predicate
obliged as follows:

— obliged(z,1,s) = agent x is obliged to do ¢ in scene s.

where ¢ is taken to be, in both cases, an illocution scheme.

Next we introduce a special type of rules, the so-called normative rules in
order to capture which agent actions (illocutions) have consequences that need
to be kept in its context. Given a performative structure and a metalanguage,
the normative rules will have the following schema:

(31,71)/\.../\(Sm’)/m)/\gﬁl...(ﬁn:>¢n+1/\.../\er

where (s1,71), ... ,(Sm,¥m) are pairs of illocution schemes and scenes, and ¢; A
...\ ¢, are meta-language predicates. Notice that some of these rules will be
devoted to the triggering of obligations, while others will be used for inferring
facts that will be subsequently employed to determine the access of an agent to
other scenes.

Let us consider the following example that will help us illustrate how nor-
mative rules are specified?:

(auction_room, commit(?x : a, 7y : b, sell(?good, 7y, Tprice, Tround))) =

obliged(?y, commit(?y : b, 7z : ¢, pay(?good, Tprice, Tcard), buyers_settlements)
(1)

If an auctioneer commits to sell the good at auction at a given buyer, this is

obliged to commit to a buyers’ accountant in a settlements scene to pay for the
good.

3 a, b, c stand respectively for the auctioneer, buyer and accountant roles.



Summarising the deployment of normative rules is motivated by the need of
an institution to infer agents’ obligations as well as the consequences of agents’
local actions (within scenes) that have effect out of the scope of a scene.

3.6 Electronic Institution

Finally, we can define an electronic institution choosing a performative struc-
ture and defining the rest of its components. These are the institutional roles,
the hierarchy between roles, the policy of duties and the normative rules. The
institutional roles define a set of roles that can not be played by the external
agents. They are like the workers in a human institution. In the case of the hier-
archy of roles and the ssd we can to take into account that both are applied to
the set of roles of the institution which are all the roles appearing in the different
scenes of the performative structure.

Definition 4. An electronic institution is defined as a tuple
(PS, IR, =,ssd, Npg)
where

— PS stands for a performative structure;

IR is a subset of roles representing the institutional roles;

> stands for the hierarchy partial order over the roles;

— ssd is the set of static separation of duties between roles; and
— Npg stands for a set of normative rules.

Notice that the specification of an electronic institution must be regarded
as a compositional activity to be undertaken by the institution designer. We
can consider that specifications of dialogic frameworks, scenes and peformative
structures are to be naturally organised into specification libraries.

Once completed a specification, it must go through a validation process that
checks its well-formedness. Ultimately, if such a specification proves to be correct,
its equivalent textual representation must be generated in order to be manip-
ulated by the agents intending to participate in the institution. Moreover, the
generated textual representations can be also employed for brokering purposes.

In the light of the complexity of the whole process, it is apparent the need
of tools that assist the institution designer through the specification, validation,
and translation of an electronic institution into a machine-readable format so
that it can be easily parsed by agents.

4 Practical Specifications

The purpose of this section is to practically illustrate how to specify electronic
institutions. For this purpose we concentrate on the modelling of the fish market
an electronic auction house, whose complete graphical specification is shown in
Figure 3.



INSTITUTION
ROLES

b buyer
s seller

ba buyer admitter

sa seller admitter

a auctioneer

bac buyer accountant
sac seller accountant

Fig. 3. Graphical Specification of the Fishmarket Performative Structure.

If we look at the example in figure 3 we can see that there are five scenes
apart from the root and the output scene. We can observe the different paths
that agents can follow depending on their role. Each scene is created by an
institutional agent: buyer admitter, seller admitter, auctioneer, buyer accountant
and seller accountant. This agents start one of the scenes and are in charge of
it. They will dialogue with the external agents coming to the institutions.

We have two roles that external agents can play, the buyer and the seller
roles. Both of them and also the institutional agents go for the root scene when
entering the institutions. From the root scene we can see that buyers and sellers
have different paths. On the one hand, buyers after entering in the root scene they
can only go to the buyer admission scene. There they have to pass the admission
process that is mediated by the buyer admitter who will ask the buyer for his
login and password. If he is admitted, then he can go to the auction scene. As
it can be some auction rooms at the same time, maybe each one auctioning a
different kind of goods, he can choose a subset of them to go. For that reason
the arc connecting the transition and the auction room is labelled of type some.
When a buyer wants to leave the auction room it have two possibilities, to go to
the output scene and leave the institution or to go to the buyer settlements. If he
has won a round he must go to the buyer settlements to pay for the goods and
the path going to the output scene is disabled for him. At the buyers settlements
he has to pay for the goods corresponding to the round(s) that he has won and
then he can leave the institution going to the output scene.

On the other hand, from the root scene sellers can only go to the seller
admission scene. There they identify themselves with the sellers admitter and
deliver their goods for being auctioned. From there they can go to the seller



settlements scene where they receive the money for their goods after they have
been auctioned at the auction scene. After receiving the money they can leave
the institution moving from the seller settlements scene to the output scene.

5 Summary

In agree with [11], although organisational design is widely admitted as a fun-
damental issue in multi-agent systems, social concepts have been introduced in
a rather informal way. Hence the need for formally incorporating organisational
terms and concepts into multi-agent systems.

In this paper we have argued that agent societies can be effectively designed
and constructed as electronic institutions. Then we have adopted a formal ap-
proach to specify electronic institutions. But why a formal technique? We believe
that the following tip [1](page 215) answers the question:

Use a formal technique when we cannot afford to have the requirements
misunderstood.

An this is our case if we consider the high complexity of what we have identified as
our main goal: the design and development of architecturally- neutral electronic
institutions inhabited by heterogeneous (human and software) agents. In general,
the presence of an underlying formal method underpins the use of structured
design techniques and formal analysis, facilitating development, composition and
reuse. Thus, we defend that successful methodologies must rely on unambiguous
formal semantics, though developers are not aware of the existence of such a
semantics as pointed out in [27].

Thus, we consider that the development of an electronic institution must be
preceded by a precise specification that fully characterise the institution’s rules.
Some important advantages derive from the creation of specifications (models)
of electronic institutions:

— An electronic institution model is a description of the modelled institution
that can be used either as a specification or as a presentation. Such a model
allows to investigate a new institution before being constructed. This possi-
bility is particularly useful for institutions where design errors may jeopardise
security or be expensive to correct.

— Graphical specifications are extremely easy to understand. They are similar
to the informal diagrams employed by engineers and designers while design-
ing, constructing and analysing a system.

— An electronic institution’s specification offers an explicit description of both
states and actions, in contrast to most description languages which describe
either the states or the actions.

— The behaviour of an electronic institution model can be analysed, either by
means of simulation or by means of more formal analysis methods.

— The process of creating the description and performing the analysis allows
the modeller to gain a dramatically improved understanding of the modelled
institution.
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