Proceedings of

Symposia on Mathematical Techniques Applied to Data Analysis and Processing (SMATAD)

May 18th-21th 2017
Fuengirola, Málaga (Spain)
Contents

THURSDAY 18th May

Formal Concept Analysis I (10:00-11:30)

1. **Characterizing the existence of residual for a morphism between a fuzzy preposet and an unordered fuzzy structure**
 CABRERA Inmaculada P., CORDERO Pablo, and OJEDA-ACIEGO Manuel
 17

2. **Fuzzy Associative Memory in the Context of Formal Concept Analysis**
 PERFILIEVA Irina and VAJGL Marek
 19

3. **Intuitionistic \mathbb{L}-fuzzy Formal Concept Analysis**
 KR´IDLO Ondrej and OJEDA-ACIEGO Manuel
 21

4. **Simplification Logic as the tool to build efficiently direct bases in Formal Concept Analysis**
 RODRÍGUEZ-LORENZO Estrella, CORDERO Pablo, ENCISO Manuel, and MORA Ángel
 23

Formal Concept Analysis II (12:00-13:30)

5. **Non-standard cuts in poset valued settings and applications**
 TEPAVČEVIČ Andreja
 26

6. **Attribute reduction methods based on a discernibility matrix are outperformed by basic clarification and reduction**
 KONECNY Jan
 27

7. **A Perspective and a Prospective on K-Formal Concept Analysis**
 VALVERDE-ALBACETE Francisco J. and PELAEZ-MORENO Carmen
 29

8. **Reducts and Bireducts considering Tolerance Relations**
 BENÍTEZ Maríà José, MEDINA Jesús, RAMÍREZ-POUSSA Eloísa and ŠLEZAK Dominik
 31

Plenary Talk (15:00-16:15)

9. **Ambiguity and Hesitancy in Quality Assessment: The case of Image segmentation.**
 Carlos López-Molina

Fuzzy Techniques in Image Processing (16:45-18:15)

10. **The use of directional monotonicity in edge detection**
 BUSTINCE Humberto, BARRENECHEA Edurne, FERNANDEZ Javier, MESIAR Radko, KOLESÁROVÁ Anna and SESMA-SARA Mikel
 33

11. **Automatic License Plate Recognition**
 HURTÍK Petr
 35

12. **Fuzzy Black Top-Hat and Hit-or-Miss transformations and their applications**
 BIBILONI Pedro, GONZÁLEZ-HIDALGO Manuel, MASSANET Sebastia, MIR Arnau and RUIZ-AGUILERA Daniel
 37

13. **A General Use of the Pattern Matching Algorithm**
 STEVULIAKOVÁ Petra and HURTÍK Petr
 39
SATURDAY 20th May

Plenary Talk (10:00-11:15)
Data-Driven Distributionally Robust Optimization Using the Wasserstein Metric

KUHN Daniel

Forecasting and optimization under uncertainty I (12:00-13:30)

Multistage stochastic dominance risk averse measures in mathematical optimization under uncertainty, and industrial experiences

ESCUEDERO Laureano F. .. 41

Stochastic Predicted Bands: A Novel Interval-Based Method for Decision-Making

SHOKRI GAZAFROUDI, Amin, PRIETO-CASTRILLO, Francisco and COR-CHADO, Juan Manuel ... 42

Regression with fuzzy/linguistic rules

KUPKA Jiří and RUSNOK Pavel 44

Short-term Forecasting of Price-responsive Loads Using Inverse Optimization

MORALES Juan Miguel and SÁEZ-GALLEGO Javier 45

Forecasting and optimization under uncertainty I (15:30-17:00)

Capacity Expansion of Stochastic Power Generation under Two-Stage Electricity Markets

PINEDA Salvador and MORALES Juan Miguel. 46

Energy and Reserve Scheduling under Uncertain Nodal Net Power Injections: A Two-Stage Adaptive Robust Optimization Approach

ARROYO José M., COBOS Noemi G. and STREET Alexandre 47

Toward Cost-Efficient and Reliable Unit Commitment Under Uncertainty

PANDŽIĆ Hrvoje ... 48

An Efficient Robust Solution to the Two-Stage Stochastic Unit Commitment Problem

BLANCO Ignacio and MORALES Juan Miguel 50
SUNDAY 21st May

Plenary Talk (10:00-11:15)

Connecting paraconsistent and many-valued logic in decision making task
TURUNEN Esko

Contradiction and lack of information in knowledge-data-bases I (12:00-13:30)

<table>
<thead>
<tr>
<th>Some observations on paraconsistent degree-preserving fuzzy logics</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTEVA Francesc and GODO Lluis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dealing with Undefined Values in Fuzzy Partial Logic</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>MURINOVÁ Petra, BURDA Michal and PAVLISKA Viktor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On the interpretation of undefined degrees in partial fuzzy logic</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>BĚHOUNEK Libor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Steps Towards Fuzzy Type Theory with Partial Functions</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOVÁK Vilém</td>
<td></td>
</tr>
</tbody>
</table>

Contradiction and lack of information in knowledge-data-bases II (15:30-17:00)

<table>
<thead>
<tr>
<th>Fuzzy set theory with undefined membership values</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>DÁNKOVÁ Martina</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A survey on Coherence Notions useful for Multi-adjoint Normal Logic Programming Theory</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORNEJO M.Eugenia, LOBO David and MEDINA Jesús</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On the relationship of the f-index of contradiction with the f-index of inclusion</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADRID Nicolás</td>
<td></td>
</tr>
</tbody>
</table>
Some observations on paraconsistent degree-preserving fuzzy logics

ESTEVA Francesc and GODO Lluis

III - CSIC
Campus UAB, 08193 Bellaterra
Spain
E-mail: {esteva,godo}@iiia.csic.es

In the recent past, formal systems of fuzzy logic, under the umbrella of mathematical fuzzy logic (MFL) [2], have been proposed and studied as suitable tools for reasoning with propositions containing vague predicates. One of their main features is that they allow to interpret formulas in linearly ordered scales of truth values, which makes them specially suited for representing the gradual aspects of vagueness. Particular deductive systems in MFL have been usually studied under the paradigm of (full) truth-preservation which, generalizing the classical notion of consequence, postulates that a formula follows from a set of premises if every algebraic evaluation that interprets the premises as true also interprets the conclusion as true. An alternative approach that has recently received some attention is based on the degree-preservation paradigm [1, 6], in which a conclusion follows from a set of premises if, for all evaluations, the truth degree of the conclusion is not lower than that of the premises. It has been argued that this approach is more coherent with the commitment of many-valued logics to truth-degree semantics because all values play an equally important rôle in the corresponding notion of consequence [5].

Moreover, while the truth-preserving fuzzy logics are explosive, i.e. from any theory containing a formula \(\varphi \) and its negation \(\neg \varphi \) everything follows, in two recent papers [3, 4] some (extensions of) degree-preserving fuzzy logics have been shown to exhibit some well behaved paraconsistency properties. In particular, this is the case of the well-known Lukasiewicz logic \(\mathbb{L} \), whose degree preserving companion \(\mathbb{L}^\leq \) is not explosive, i.e. it is paraconsistent. Actually, the degree-preserving companions of finitely-valued Lukasiewicz logics \(\mathbb{L}_n \) belong to the family of the so-called logics of formal inconsistency (LFI).

In this paper we introduce \(\text{RPL}^\leq \), the degree-preserving companion of well-known Rational Pavelka logic \(\text{RPL} \) (the expansion of Lukasiewicz logic with rational truth-constants as defined by Hájek in [7]) and study some of its properties. The use of truth-constants allows us to explicitly show what is the inferential loss in some reasoning patterns when moving from \(\text{RPL} \) to its weaker, paraconsistent companion \(\text{RPL}^\leq \).

Recall that the logical consequence relation for \(\mathbb{L}^\leq \) is defined as follows [6]: for every set of formulas \(\Gamma \cup \{ \varphi \} \), \(\Gamma \models_{\mathbb{L}^\leq} \varphi \) iff for every evaluation \(e \) over the standard MV-algebra \([0,1]_{\text{MV}} \) and every \(a \in [0,1] \), if \(a \leq \nu(\gamma) \) for every \(\gamma \in \Gamma \), then \(a \leq \nu(\varphi) \). For this reason \(\mathbb{L}^\leq \) is known as the Lukasiewicz logic preserving degrees of truth, or the degree-preserving companion of \(\mathbb{L} \). In fact, \(\mathbb{L} \) and \(\mathbb{L}^\leq \) have the same tautologies, and for every finite set of formulas \(\Gamma \cup \{ \varphi \} \) we have:

\[
\Gamma \models_{\mathbb{L}^\leq} \varphi \text{ iff } \models_{\mathbb{L}^\leq} \varphi^\uparrow \Rightarrow \varphi,
\]

where \(\Gamma^\uparrow \) means \(\gamma_1 \land \ldots \land \gamma_k \) for \(\Gamma = \{ \gamma_1, \ldots, \gamma_k \} \) (when \(\Gamma \) is empty then \(\Gamma^\uparrow \) is \(\top \)). It is worth noticing that the usual rule of modus ponens is not sound for \(\mathbb{L}^\leq \). However, the logic \(\mathbb{L}^\leq \)

Acknowledgement The support of the Spanish MINECO project RASO (TIN2015-71799-C2-1-P) is kindly acknowledged.
admits a Hilbert-style axiomatisation with a weaker form of modus ponens. Indeed, by letting the axioms of L^\leq be the same axioms as L having the following deduction rules:

\[
\begin{align*}
\text{(Adj-\land)} & \quad \varphi \land \psi \\
\text{(MP-r)} & \quad \frac{\varphi \land \psi}{\psi} \\
\end{align*}
\]

one gets a sound and complete axiomatisation of $|=_{L^\leq}$ for deductions from a finite set of formulas [1].

Now we can introduce the logic RPL^\leq. First we extend the language of L^\leq by introducing a rational truth-constant r for every rational $r \in [0,1]$. The notion of logical consequence, $|=_{RPL^\leq}$, is defined as $|=_{L^\leq}$ with the proviso that every evaluation e over the standard MV-algebra $[0,1]_{MV}$ additionally satisfies $e(r) = r$ for every rational $r \in [0,1]$. On the other hand, one gets a sound and finite strong complete axiomatisation for $|=_{RPL}$ just adding to the axiomatic system for L^\leq the usual booking axioms for truth-constants. Moreover, an analogous Pavelka-style completeness result for RPL^\leq can also be obtained: for any set of RPL formulas $T \cup \{\varphi\}$, define:

- truth degree of φ in T: $\|\varphi\|_T^\leq = \inf\{e(T) \rightarrow e(\varphi) : e \text{ RPL-evaluation}\}$,
- provability degree of φ from T: $|\varphi|_T^\leq = \sup\{r | T \vdash_{RPL}^\leq r \rightarrow \varphi\}$,

where $e(T) = \inf\{e(\psi) : \psi \in T\}$.

Theorem 5. For any set of RPL formulas $T \cup \{\varphi\}$, we have:

$|\varphi|_T^\leq = \|\varphi\|_T^\leq$.

This shows that RPL^\leq is well-behaved in a sense. However, we have mentioned above that the usual rule of modus ponens is not sound in L^\leq, and hence neither in RPL^\leq. Actually, in RPL^\leq, one can show that the following deduction holds: $\{\varphi, \varphi \rightarrow \psi\} \vdash_{RPL}^\leq 0.5 \rightarrow \psi$. That is, in RPL^\leq we are forced to lower the truth-degree of the conclusion in order to have a sound but weaker modus ponens rule. We will discuss this and other facts about RPL^\leq that may be seen as a somewhat questionable price to pay for enjoying a paraconsistent behaviour.

References

