Self-organising multi-agent systems provide a suitable paradigm for developing autonomic computing systems that manage themselves. Towards this goal, we demonstrate a robust, decentralised approach for structural adaptation in explicitly modelled problem solving agent organisations. Based on self-organisation principles, our method enables the autonomous agents to modify their structural relations to achieve a better allocation of tasks in a simulated task-solving environment. Specifically, the agents reason about when and how to adapt using only their history of interactions as guidance. We empirically show that, in a wide range of closed, open, static and dynamic scenarios, the performance of organisations using our method is close to that of an idealised centralised allocation method and is considerably better than the current state of the art decentralised approaches.
