In this paper we define a framework to introduce gradedness in Deontic logics through the use of fuzzy modalities. By way of example, we instantiate the framework to Standard Deontic logic (SDL) formulas. Given a deontic formula $\Phi \in SDL$, our language contains formulas of the form $\overline{r} \to N\Phi$ or $\overline{r} \to P\Phi$, where $r \in [0, 1]$, expressing that the preference or probability degree respectively of a norm $\Phi$ is at least $r$. We present sound and complete axiomatisations for these logics.
Links:
[1] http://www.iiia.csic.es/en/individual/pilar-dellunde
[2] http://www.iiia.csic.es/en/individual/lluis-godo
[3] http://www.iiia.csic.es/en/publications/export/tagged/2885
[4] http://www.iiia.csic.es/en/publications/export/xml/2885
[5] http://www.iiia.csic.es/en/publications/export/bib/2885
[6] http://www.iiia.csic.es/files/pdfs/DellundeG08.pdf
[7] http://www.iiia.csic.es/en/project/at
[8] http://www.iiia.csic.es/en/project/iea